
150V N-CHANNEL ENHANCEMENT MODE MOSFET

MAIN CHARACTERISTICS

I _D	4A		
V _{DSS}	150V		
R _{DSON} -typ(@V _{GS} =10V)	< 300mΩ (Type:230 mΩ)		

Application

- **♦**Battery protection
- **♦**Load switch
- ♦Uninterruptible power supply

Marking Code				
YFW4N15MI	MAB5			

Maximum Ratings at Tc=25°C unless otherwise specified

Characteristics	Symbols	Value	Units
Drain-Source Voltage	V _{DS}	150	V
Gate - Source Voltage	V _{GS}	±20	V
Continuous Drain Current, V _{GS} @ 10V ¹ @T _A =25℃	I _D	4	Α
Continuous Drain Current, V _{GS} @ 10V ¹ @T _A =100℃	I _D	1.5	Α
Pulsed Drain Current ²	I _{DM}	9	Α
Total Power Dissipation ³ @T _A =25℃	P _D	2	w
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Temperature Range	TJ	-55 to +150	°C
Thermal Resistance, Junction ambient ¹	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction-case ¹	R _e Jc	80	°C/W

Maximum Ratings at Tc=25°C unless otherwise specified

Characteristics	Test Condition	Symbols	Min	Тур	Max	Units
Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	BV _{DSS}	150	165	-	V
Zero Gate Voltage Drain Current	V _{DS} =150V , V _{GS} =0V	l _{DSS}	-	-	1	μА
Gate to Body Leakage Current	V _{GS} =±20V, V _{DS} =0V	I _{GSS}	-	-	±100	nA
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	V _{GS(th)}	1.0	1.8	3.0	V
Drain-Source On-State Resistance	V _{GS} =10V, I _D =1.5A		-	220	280	mΩ
	V _{GS} =4.5V, I _D =1.5A	R _{DS(ON)}	-	230	300	
Forward Transconductance	V _{DS} =15V, I _D =1.5A	9fs	-	3		s
Input Capacitance	V _{DS} =25V	C _{iss}	-	235	-	
Output Capacitance	V _{GS} =0V	Coss	-	36	-	PF
Reverse Transfer Capacitance	f=1MHz	C _{rss}	-	20	-	
Turn-on delay time	V _{DD} =75V	t _{d(on)}	-	8	-	
Turn-on Rise Time	$I_D=1.6$ $I_D=1.6$ $R_L=75\Omega$ $V_{GS}=10V$	T _r	-	10	-	1
Turn-Off Delay Time		t _{d(OFF)}	-	20	-	- nS
Turn-Off Fall Time	$R_G=6\Omega$	t _f	-	15	-	1
Total Gate Charge	V 75V	Qg	-	8	-	
Gate-Source Charge	V _{DS} =75V I _D =1.5A	Q_{gs}	-	1.4	-	nC
Gate-Drain Charge	V _{GS} =10V	\mathbf{Q}_{gd}	-	2.1	-	1
Diode Forward Voltage ^(Note 3)	V _{GS} =0V , I _S =2A	V _{SD}	-	-	1.2	v
Diode Forward Current ^(Note 2)		Is	-	-	2	Α

Note:

^{1.} The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper. 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.}The power dissipation is limited by 150 $^{\circ}\mathrm{C}$ junction temperature

⁴ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Ratings and Characteristic Curves

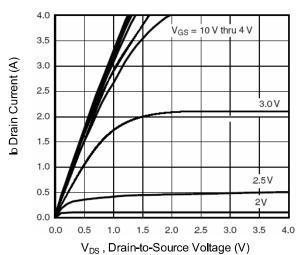


Fig.1 Typical Output Characteristics

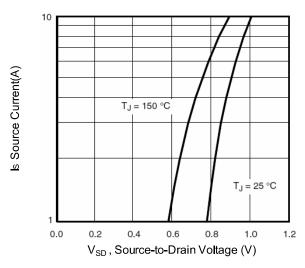


Fig.3 Forward Characteristics of Reverse

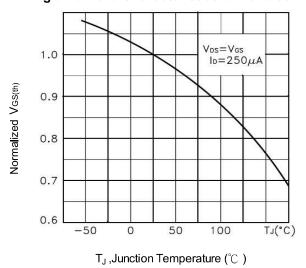


Fig.5 Normalized V_{GS(th)} vs. T_J

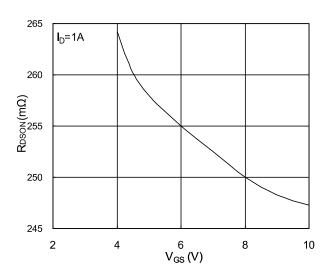


Fig.2 On-Resistance vs. Gate-Source

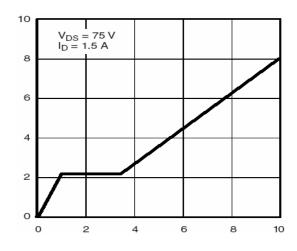


Fig.4 Gate-Charge Characteristics

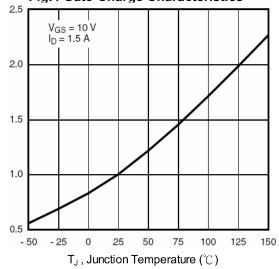
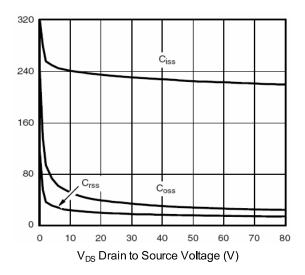



Fig.6 Normalized RDSON vs. TJ

Normalized On Resistance

Ratings and Characteristic Curves

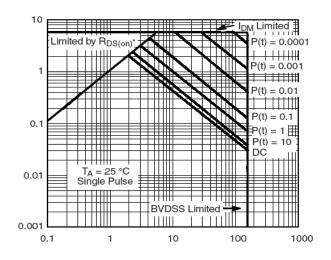


Fig.7 Capacitance

Fig.8 Safe Operating Area

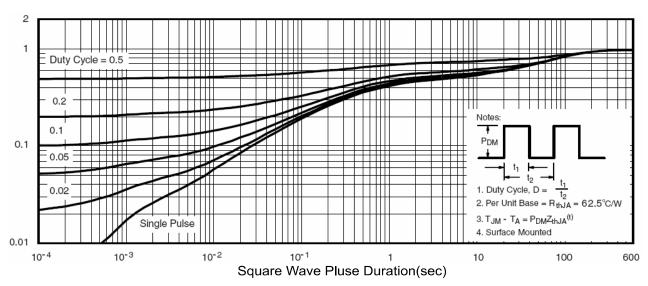
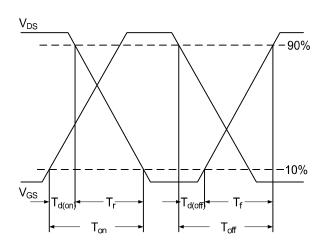



Fig.9 Normalized Maximum Transient Thermal Impedance

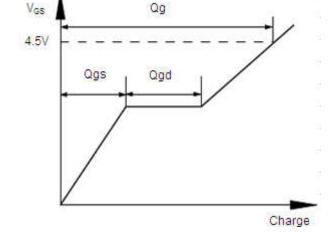
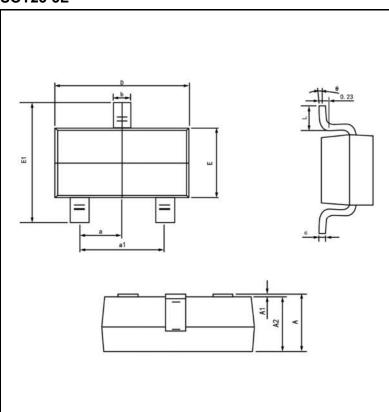


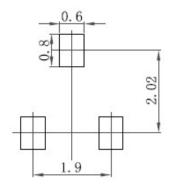
Fig.10 Switching Time Waveform

Fig.11 Gate Charge Waveform



Ordering information

Package	Packing Description	Base Quantity	Packing Quantity
SOT23-3L Tape/Reel,7"reel		3000pcs/Reel	24000PCS/Box 120000PCS/Carton


Package Dimensions

SOT23-3L

Dim.	Millimeter (mm)		mil		
	Min.	Max.	Min.	Max.	
Α	1.05	1.25	41	49.2	
A1	0.	10	3.	93	
A2	1.05	1.15	41	45	
b	0.30	0.50	12	20	
С	0.10	0.20	3.93	7.9	
D	2.82	3.02	111	119	
E	1.50	1.70	59	67	
E1	2.65	2.95	104	116	
е	0.95		37	7.4	
e1	1.80	2.00	71	78	
L	0.30	0.066	12	26	
Θ	8°				

The recommended mounting pad size

Disclaimer

The information presented in this document is for reference only. GuangDong Youfeng Microelectronics Co.,Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise. The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices),YFW or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale. This publication supersedes & replaces all information previously supplied. For additional information, please visit our website https://www.yfwdiode.com, or consult YFW sales office for further assistance.